A BESSEL DELTA METHOD AND EXPONENTIAL SUMS FOR GL(2)
نویسندگان
چکیده
منابع مشابه
Bessel Polynomials and the Partial Sums of the Exponential Series
Let e k (x) denote the k-th partial sum of the Maclaurin series for the exponential function. Define the (n + 1) × (n + 1) Hankel determinant by setting Hn(x) = det[e i+j (x)] 0≤i,j≤n. We give a closed form evaluation of this determinant in terms of the Bessel polynomials using the method of recently introduced γ-operators.
متن کاملDiophantineMethods for Exponential Sums, and Exponential Sums for Diophantine Problems
Recent developments in the theory and application of the HardyLittlewood method are discussed, concentrating on aspects associated with diagonal diophantine problems. Recent efficient differencing methods for estimating mean values of exponential sums are described first, concentrating on developments involving smooth Weyl sums. Next, arithmetic variants of classical inequalities of Bessel and ...
متن کاملUltra Bessel sequences in direct sums of Hilbert spaces
In this paper, we establish some new results in ultra Bessel sequences and ultra Bessel sequences of subspaces. Also, we investigate ultra Bessel sequences in direct sums of Hilbert spaces. <span style="font-family: NimbusRomNo9L-Regu; font-size: 11pt; color: #000000; font-s...
متن کاملStepanov’s Method Applied to Binomial Exponential Sums
For a prime p and binomial axk+bxl with 1 ≤ l < k < 1 32 (p−1) 2 3 , we use Stepanov’s method to obtain the bound ∣∣∣∣∣ p−1 ∑ x=1 ep(ax k + bx) ∣∣∣∣∣ max { 1, l∆− 1 3 } 1 4 k 1 4 p 3 4 , where ∆ = k−l (k,l,p−1) .
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Quarterly Journal of Mathematics
سال: 2020
ISSN: 0033-5606,1464-3847
DOI: 10.1093/qmathj/haaa026